

Structural Challenges for Design

Presented by: Robert A. Harvey, P.E.

. .

Main Features of GulfQuest

thompson

- GulfQuest is a Maritime Museum that emphasizes the rich seafaring history of the Gulf Coast
- Unique building shape, a concrete ship
- On the waterfront
- Small footprint, floor space increases on higher floors
- Bridge, Dome
- Exterior hanging stairs
- Ships bridge and roof, great view of Mobile River waterfront

Main Features of GulfQuest

- Within the 90,000 sq. ft. enclosure:
 - Rotunda (3 stories, globe, and grand entry point
 - Theater
 - Café
 - Store
 - Atrium

Main Features of GulfQuest

LOBAL 60

- Within the 90,000 sq. ft.
 enclosure (continued):
 - Discovery dock and water feature
 - Full size replica of a container ship
 - Museum displays in container ship
 - Visitor access to museum displays utilizes ramps hung from atrium roof
 - Ships bridge

- Construction Program Management: Hoar Construction
- First contract: surcharge material for north slab on grade (El. 16.0) – surcharge from El. +8.0 to +16.5
 - Contract cost: \$92,000
 - Contractor: Adams and Son
 Construction
 - Surcharge height: 8'6"
 - 82 days
 - 1"-3" settlement, greatest toward the river

- Piling and dewatering contract, \$2.5-million
- General Contractor Vance McCown
- Subcontractor Berkel & Company (drilled displacement piles)
- Subcontractor Burns (dewatering)
- Founded on 866, 16-inch diameter drill displacement piles
- First floor north (El. 16.) floor slab on compacted fill (surcharged)

Pile – 115 Tons Compression – 20 Tons Tension

thompson ENGINEERING

thompson

- Shoring
- Well points and dewatering system
- Drill displacement piles
- Basement floor elevation at +6", outside grade is +8.0 ft.
- Basement floor is water proofed to prevent water intrusion

LEGEND	PILE ZONE	GENERAL ZONE DESCRIPTION	REQUIRED PILE TIP ELEVATION	REQUIRED IE CUMULATIVE VALUE
	A	SOUTHEAST PERIMETER	-40.0 (or refusal*)	Minimum of 300
	8	NORTHEAST/DIAG. PERIMETER	-40 min.	Minimum of 300
	C	SOUTHWEST AND S. PERIMETER	-30 min.	Minimum of 300
	D	EAST BASEMENT	-35 min. / -40 max.	Minimum of 300
	E	WEST BASEMENT	-30 min, / -35 max.	Minimum of 300
	F	NORTHWEST/DIAG. PERIMETER	-35 min.	Minimum of 300
	G	NORTHWEST MAIN FLOOR	-30 min, / -35 max.	Minimum of 250
	H	NORTHEAST MAIN FLOOR	-35 min. / -40 max.	Minimum of 250

Drill displacement piles

thompson Engineering

Foundation

- Interference of existing timber, Tangent Pile Wall beneath on east side.
- Pile cap reinforcement was increased from 60 to 75 KSI

- Structural Contract: W.G. Yates, \$14.4M
- Original design used some post tension. Changed to CIP at recommendations of precast manufacturer.
- Atrium east and west walls were unstable, overturning outward.
- Complicated formwork and shoring, rakers

thompson

Diaphragms at floors, El. 30.0', El. 44.0' and roof were considered.

Framing System at Atrium

thompson engineering

Framing System at Atrium

- Col. Lines 10-13
 - Used roof truss lower chord to tie East wall to West wall. The original roof design used an arch.
 - East and West wall shoring left in place until roof was in place.

Framing System at Atrium

Bridge Framing

 The circular bridge was originally designed out of concrete – problems with shoring on three columns at Northside; no visible means of support.

Bridge Framing

- Design changed from concrete to steel
- Installation challenges
- Steel fabricator (Steel, Inc.) and steel erector (Atlanta Steel Erectors)

Bridge Framing

thompson

DETAIL

Completed Bridge

Hanging Ramps

- Access to three story museum venues by ramps hanging from rods
- Ramps are more complicated than illustration

Hanging Ramps

- Design 5-foot wide walkway
- 3¹/₂-inch concrete deck on metal deck
- 8-inch channel framing (MC 8X18.7)
- Hanger assembly
- 1½-inch dia. rods, ASTM A-449
- 12-feet on center

Hanging Ramps

- Installation challenges
- Precast or CIP?
- Pumped concrete

ELEVATION

thompson ENGINEERING

METAL DECK AND GUARD RAIL

Hanging Ramps

METAL DECK

METAL DECK AND GUARD RAIL

HANGAR ASSEMBLY

RAMP AFTER CONCRETE PLACEMENT thompson ENGINEERING

Hanging Ramps

HANGER ASSEMBLY

EAST ELEVATION

- Six (6) exterior hanging stairs
- Resemble hanging life boats
- Precast concrete stairs hung by SS rods

STAIR ELEVATION

thompson ENGINEERING

INTERMEDIATE LANDING

- Design
- Details

- 1 ½-inch diameter rods
- AISI 316 (SS) Strain Hardened
- Fy (min) = 50 KSI
- Fu (min) = 90 KSI
- Stair connected to floor

thompson ENGINEERING

- 1 ½-inch diameter rods
- AISI 316 (SS) Strain Hardened
- Fy (min) = 50 KSI
- Fu (min) = 90 KSI
- Stair connected to floor

thompson ENGINEERING

Stability at intermediate landings, stabilizing pipe

 Installation challenges – holes in concrete beams/Rakers for SS rods

HOLES OMITTED – SOME RAKERS WERE DRILLED FOR ROD

thompson ENGINEERING

HOLE OMITTED – RETROFIT BRACKET FOR ROD

STAIR LANDING

thompson ENGINEERING

STAIR LANDING ERECTION

Hanging Stairs

STAIR LANDING ERECTION

- Installation challenges
- Heavy stair loads
- Landing 6-11 Kips
- Stair Stringer 11 Kips

GulfQuest

thompson ENGINEERING