
GIS Enabled Automated Culvert Design

Andrew Graettinger, PhD

Ashton Greer, Leah Clifton, Zachary Wilbanks, and Bradford Wilson

The University of Alabama Civil, Construction, and Environmental Engineering

Outline

- Culvert Background
- Research Project Objectives
- Methodology
- Tool Validation
- Tuscaloosa Case Study
- Results & Conclusions

Background

- Culverts are the most common method of transporting water beneath roadways
- Often managed and maintained by municipalities & DOTs
- Design requires timeconsuming spatial analysis

Objectives

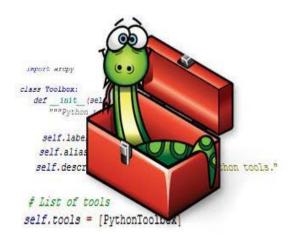
- Demonstrate that culverts can be designed within GIS
- Decrease amount of time spent designing culverts by hand
- Eliminate need to use multiple types of software (HEC-RAS, HY-8, etc.)

Rational Method for Peak Flow Determination

Q = CiA

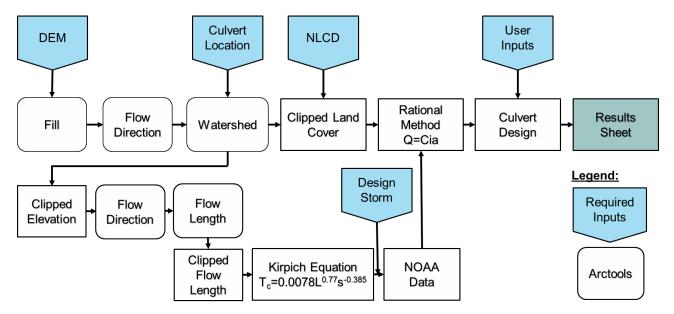
- Q = peak flow, cfs
 C = rational method
 land cover coefficient,
 dimensionless
 i = rainfall intensity,
 in/hr
- **A** = drainage area, acres

- Introduced to the US in 1889
- Most widely used peak flow method
- For watersheds < 200 acres
- Requires multiple spatial inputs

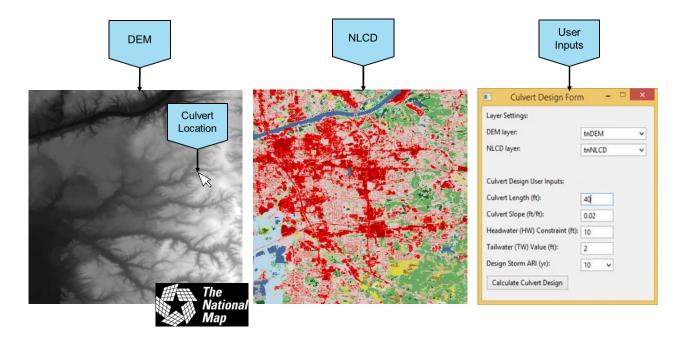

Kirpich Method for Time of Concentration

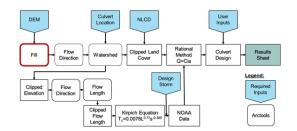
- $T_c = 0.0078L^{0.88}S^{-0.385}$
- T_c = Time of concentration, minutes
- L = Channel length, ft
- s = basin slope, ft/ft

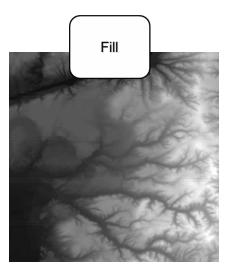
- Occurs when water from most distant point reaches watershed outlet
- Developed for small basins in Tennessee
- Adjustment factors for different terrain

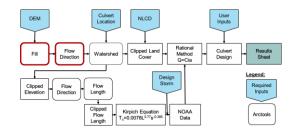

Methodology

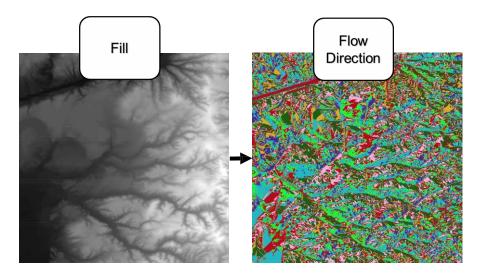
- Tool developed as Python add-in for ArcMap 10.4
 - Customization that plugs into ArcGIS Desktop application
- Utilizes ArcPy geoprocessing functions
 - Automates actions in response to an event

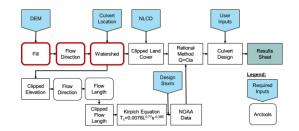


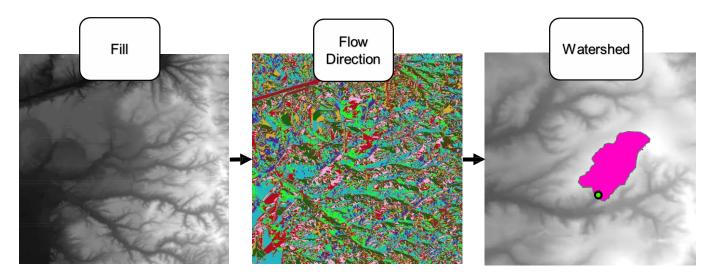

Methodology

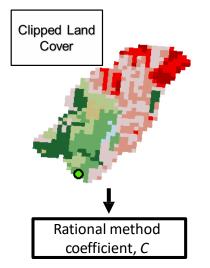

• Three categories: Landscape Analysis, Hydrologic Parameter Determination, Design Calculations

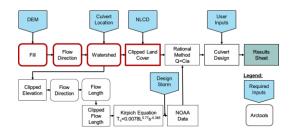


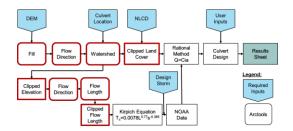

Required Inputs

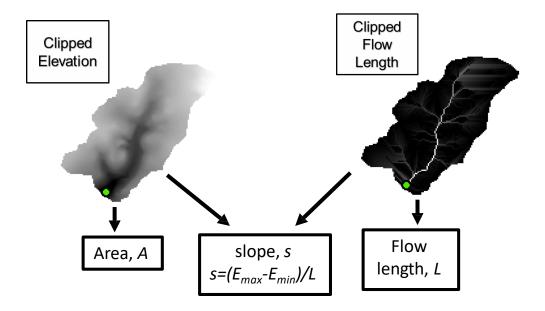




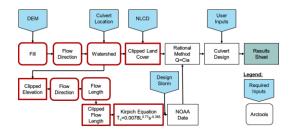


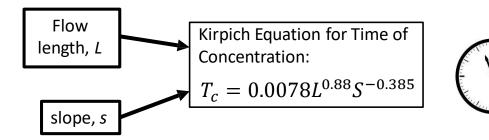



NLCD Value	Land Cover Class	C_Value
11	Open Water	1
21	Developed, Open Space	0.8
22	Developed, Low Intensity	0.85
23	Developed, Medium Intensity	0.9
24	Developed, High Intensity	0.95
31	Barren Land	0.6
41	Deciduous Forest	0.3
42	Evergreen Forest	0.2
43	Mixed Forest	0.25
52	Shrub/Scrub	0.7
71	Herbaceous	0.65
81	Hay/Pasture	0.4
82	Cultivated Crops	0.45
90	Woody Wetlands	0.9
95	Emergent Herbaceous Wetlands	0.95

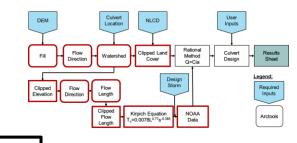


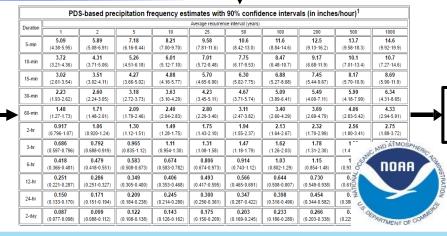
Overall weighted C calculation:


$$C = \frac{\sum_{j=1}^{n} (C_j * A_j)}{\sum_{j=1}^{n} A_j}$$


A_j= area for land cover *j C_j* = C value for j
 n = distinct landcover categeories within watershed

Hydrologic Parameter Calculations:

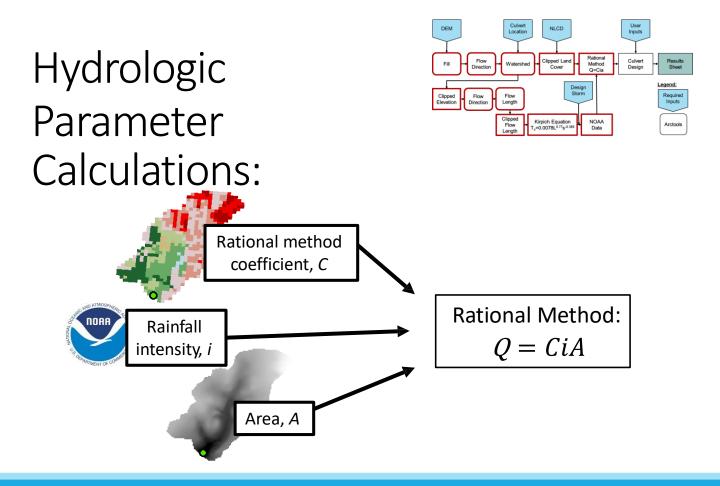

Hydrologic Parameter Calculations:


Time of

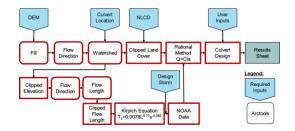
Concentration,

 T_{c}

NOAA's National Weather Service Hydrometeorological Design Studies Center Precipitation Frequency Data Server (PFDS)



Storm


Return

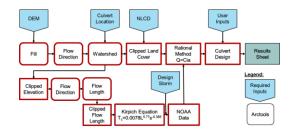
Period

Rainfall intensity, *i*

Culvert Design

 $\frac{Q}{AD^{0.5}g^{0.5}} \ge 0.70 \quad \text{(Submerged)}$ $HW = D\left[C\left(\frac{Q}{A\sqrt{gD}}\right)^2 + Y + K_s S_o\right] \quad \text{(Inlet Control)}$ $HW = TW - S_o L + \left(1 + K_e + \frac{2gn^s L}{K_n^2 R^{\left(\frac{4}{3}\right)}}\right) \frac{Q^2}{2gA^2} \quad \text{(Outlet Control)}$ $V = \frac{M}{n} R^{2/3} S_o^{1/2} \quad \text{(Flow Velocity)}$

Q = peak flow rate, cfs
A = Cross-sectional culvert area, ft
D = Culvert diameter, ft
R = Hydraulic radius, ft
g= Gravitational constant, ft/s2
HW = Headwater, ft

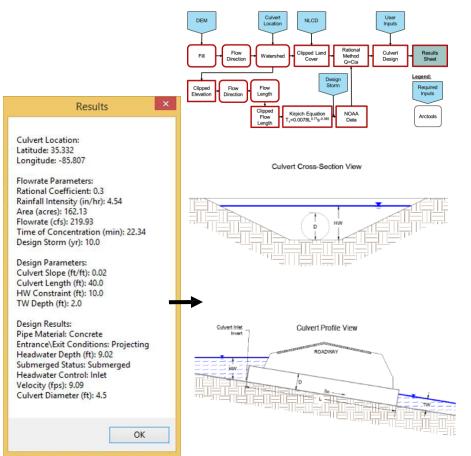

HW = Headwater, h

TW = Tailwater, ft

- **S**_o= Culvert slope, ft/ft
- L = Culvert Length, ft
- **n** = Manning's coefficient
- **M** = conversion constant (1.00)
- **C, Y, K-values** = Constants for circular, concrete pipes

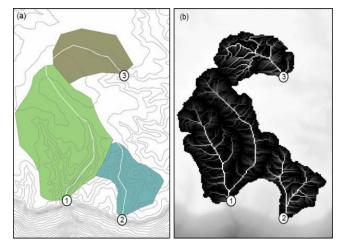
Culvert Design

- Each equation must be satisfied
- Loop iterates through a list of different diameters until conditions are met
- If conditions cannot be met, user will be notified that an error has occurred


$$\frac{Q}{AD^{0.5}g^{0.5}} \ge 0.70 \quad \text{(Submerged)}$$

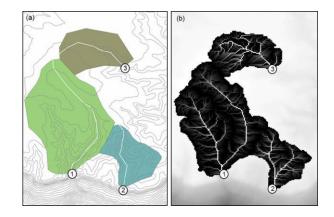
$$\frac{HW}{D} = C(\frac{Q}{A\sqrt{gD}})^2 + Y + K_s S_o \quad \text{(Inlet Control)}$$

$$HW = TW - S_oL + (1 + K_e + \frac{2gn^{s_L}}{K_n^2 R^{(\frac{4}{3})}}) \frac{Q^2}{2gA^2} \quad \text{(Outlet Control)}$$


Results

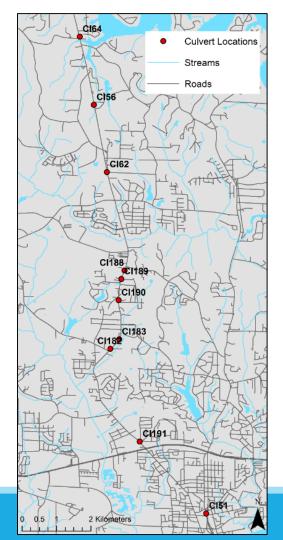
- ArcMap dialog box shows results
- Results correspond to drawings located in user guide

Tool Validation

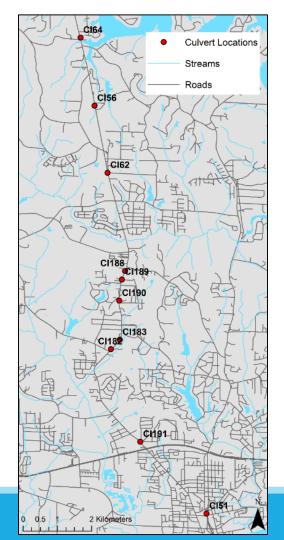

- Three rural Tennessee drainage basins were analyzed by hand (left) and with culvert tool (right)
- Peak flows were within ~ 5 %

C	ulvert ID	С	Slope (m/m)	Flow Length (m)	T _c (min)	i, 10 yr event (cm/hr)	Area (km²)	Q _{hand} calc (m ³ /s)	Q _{GIS} , auto (m³/s)	Percent Diff. (%)
	1	0.30	0.03	1506	21.75	10.5	0.684	5.918	6.172	4.29
	2	0.32	0.05	747	9.91	15.9	0.215	3.003	2.837	-5.53
	3	0.33	0.03	750	16.99	12.9	0.251	2.932	2.946	0.46
									Average	3.4

Tool Validation


 Culverts were designed with culvert tool and designed with HY-8 for verification

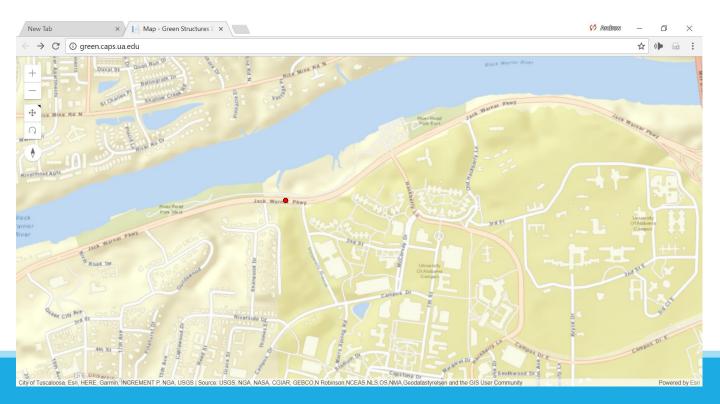
Culvert ID	Q _{GIS} , Auto (m³/s)	Slope (m/m)	Length (m)	Headwater Constraint (m)	Tailwater Value (m)	D _{GIS,} auto (m)	HY-8 Verification (m)	
1	6.172	0.02	12.2	3.05	0.610	1.372	1.372	\checkmark
2	2.837	0.02	12.2	3.05	0.610	0.914	0.914	\checkmark
3	2.946	0.02	12.2	3.05	0.610	0.914	0.914	\checkmark


Case Study

- Data was collected for 10 culverts along AL HY 43 North of Tuscaloosa:
 - Material
 - Inlet/Outlet Configuration
 - Diameter
 - Length
 - Depth of Cover

Case Study

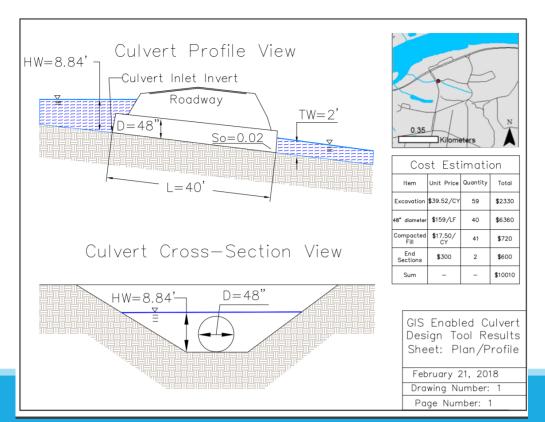
- The GIS-based culvert tool was used to redesign these 10 culverts
- We hypothesized that our tool would result in larger culverts than those currently existing.

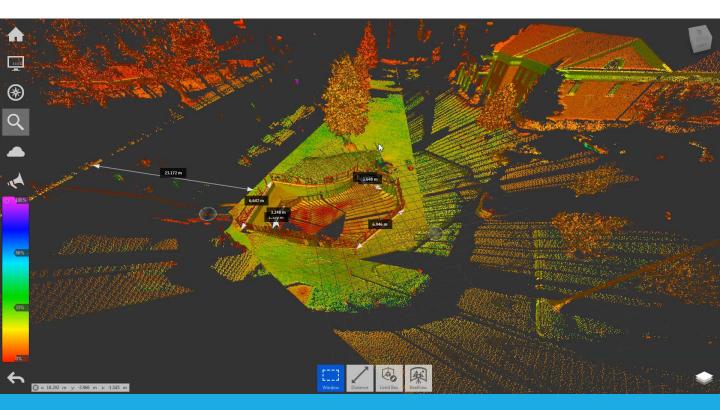


Case Study

- 10 culverts were redesigned in minutes
- 100% resulted in larger cross-section designs than those currently in place
 - Contributing assumptions: 25 year design storm, tailwater
 - Land use/climate change contributions

					\frown	
Culvert ID	С	l (in/hr)	A (acres)	Q (cfs)	D _{tool} (ft)	D _{actual} (ft)
CL51	0.84	7.21	30.9	187.4	4	1.5
Cl64	0.53	8.09	33.8	144.9	3.5	1.5
Cl190	0.56	8.88	14.7	73.5	2.5	2
CI56	0.33	6.63	41.8	90.9	3	1.5
CL62	0.69	8.39	16.5	95.1	3	2
Cl188	0.73	8.02	22.0	129.2	3.5	2
Cl189	0.54	6.64	33.6	121.4	3.5	2
CL191	0.81	9.12	6.2	46.2	2	1
Cl183	0.78	8.58	16.0	107.7	3	1.5
Cl182	0.69	9.46	6.9	45.1	2.5	1.5


On-line version of tool: green.caps.ua.edu


On-line version of tool: green.caps.ua.edu

New Tab × 🛛 📘 Map - Gr	een Structures 🛙 🗙 🔪	🕫 Andrew — 🗇 🗙
$\leftrightarrow \rightarrow \mathbb{C}$ (i) green.caps.ua.edu		☆ 🕪 🗟 🗄
+ Apart Duvarse Duvarse Batingiam	Di tana meremane ne n	Black Wartlor River
SI Charles P Shallow	Culvert Design (33.219, -87.551)	Jack Marnet Disny
← ice Mine Rd N	Storm Recurrency	Just War Jack Waraw Day
Manne Saver Ro Dr	10 years v	Phon
Rivermont apts	Design	
Rivermonarap	@ Zoom to	
Slack Part	Read Jack Warner Awy	
arrior		AND L CANADA
River		
Road Ter	Unwely Cappe	and the last
	Campus D. a	HOA THERE
Queen CIN WE SI CON DA		
410, 51 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		upper compare to
		albrate a s
City of Tuscaloosa, Esri, HERE, Garmin, INCREMENT P, NO	A, USGS Source: USGS, NGA, NASA, CGIAR, GEBCO, N Robinson, NCEAS, NLS, OS, NMA, Geodatastyrelsen an	Saminwood Dra

On-line version of tool: green.caps.ua.edu

Incorporation of higher resolution data, LiDAR

- Addition of multiple culvert configurations and flow conditions
- Addition of downstream channel cross section, slope, and evaluation for more accurate tailwater depth
- Expansion to other types of infrastructure requiring analysis of elevation and land cover

Conclusions

- Demonstrated that culverts could be automatically designed quickly & easily
- Redesigning multiple culverts along HY43 showed that all are under designed based on current land use and rainfall
- GIS has the potential to assist with many civil engineering designs

Andrew Graettinger, PhD The University of Alabama – Tuscaloosa, AL www.gisresearch.ua.edu andrewg@eng.ua.edu